Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 439: 138106, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056336

RESUMO

Accurate characterization of Panax herb ginsenosides is challenging because of the isomers and lack of sufficient reference compounds. More structural information could help differentiate ginsenosides and their isomers, enabling more accurate identification. Based on the VionTM ion-mobility high-resolution LC-MS platform, a multidimensional information library for ginsenosides, namely GinMIL, was established by predicting retention time (tR) and collision cross section (CCS) through machine learning. Robustness validation experiments proved tR and CCS were suitable for database construction. Among three machine learning models we attempted, gradient boosting machine (GBM) exhibited the best prediction performance. GinMIL included the multidimensional information (m/z, molecular formula, tR, CCS, and some MS/MS fragments) for 579 known ginsenosides. Accuracy in identifying ginsenosides from diverse ginseng products was greatly improved by a unique LC-MS approach and searching GinMIL, demonstrating a universal Panax saponins library constructed based on hierarchical design. GinMIL could improve the accuracy of isomers identification by approximately 88%.


Assuntos
Ginsenosídeos , Panax , Saponinas , Ginsenosídeos/análise , Espectrometria de Massas em Tandem/métodos , Panax/química , Cromatografia Líquida de Alta Pressão/métodos
2.
J Chromatogr A ; 1706: 464243, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37567002

RESUMO

To accurately identify the metabolites is crucial in a number of research fields, and discovery of new compounds from the natural products can benefit the development of new drugs. However, the preferable phytochemistry or liquid chromatography/mass spectrometry approach is time-/labor-extensive or receives unconvincing identifications. Herein, we presented a strategy, by integrating offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), exclusion list-containing high-definition data-dependent acquisition (HDDDA-EL), and quantitative structure-retention relationship (QSRR) prediction of the retention time (tR), to facilitate the in-depth and more reliable identification of herbal components and thus to discover new compounds more efficiently. Using the saponins in Panax quinquefolius flower (PQF) as a case, high orthogonality (0.79) in separating ginsenosides was enabled by configuring the XBridge Amide and CSH C18 columns. HDDDA-EL could improve the coverage in MS2 acquisition by 2.26 folds compared with HDDDA (2933 VS 1298). Utilizing 106 reference compounds, an accurate QSRR prediction model (R2 = 0.9985 for the training set and R2 = 0.88 for the validation set) was developed based on Gradient Boosting Machine (GBM), by which the predicted tR matching could significantly reduce the isomeric candidates identification for unknown ginsenosides. Isolation and establishment of the structures of two malonylginsenosides by NMR partially verified the practicability of the integral strategy. By these efforts, 421 ginsenosides were identified or tentatively characterized, and 284 thereof were not ever reported from the Panax species. The current strategy is thus powerful in the comprehensive metabolites characterization and rapid discovery of new compounds from the natural products.


Assuntos
Produtos Biológicos , Ginsenosídeos , Panax , Ginsenosídeos/análise , Panax/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida , Flores/química , Produtos Biológicos/análise
3.
Toxics ; 11(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37505576

RESUMO

Black soldier fly (Hermetia illucens L) larvae (BSFL) possess remarkable antibiotic degradation abilities due to their robust intestinal microbiota. However, the response mechanism of BSFL intestinal microbes to the high concentration of antibiotic stress remains unclear. In this study, we investigated the shift in BSFL gut microbiome and the functional genes that respond to 1250 mg/kg of tetracycline via metagenomic and metatranscriptomic analysis, respectively. The bio-physiological phenotypes showed that the survival rate of BSFL was not affected by tetracycline, while the biomass and substrate consumption of BSFL was slightly reduced. Natural BSFL achieved a 20% higher tetracycline degradation rate than the germ-free BSFL after 8 days of rearing. Metagenomic and metatranscriptomic sequencing results revealed the differences between the entire and active microbiome. Metatranscriptomic analysis indicated that Enterococcus, Vagococcus, Providencia, and Paenalcaligenes were the active genera that responded to tetracycline. Furthermore, based on the active functional genes that responded to tetracycline pressure, the response mechanisms of BSFL intestinal microbes were speculated as follows: the Tet family that mediates the expression of efflux pumps expel tetracycline out of the microbes, while tetM and tetW release it from the ribosome. Eventually, tetracycline was degraded by deacetylases and novel enzymes. Overall, this study provides novel insights about the active intestinal microbes and their functional genes in insects responding to the high concentration of antibiotics.

4.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1899-1907, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282966

RESUMO

To study the quality control of three traditional Chinese medicines derived from Gleditsia sinensis [Gleditsiae Sinensis Fructus(GSF), Gleditsiae Fructus Abnormalis(GFA), and Gleditsiae Spina(GS)], this paper established a multiple reaction monitoring(MRM) approach based on ultra-high performance liquid chromatography-triple quadrupole-linear ion-trap mass spectrometry(UHPLC-Q-Trap-MS). Using an ACQUITY UPLC BEH C_(18) column(2.1 mm × 100 mm, 1.7 µm), gradient elution was performed at 40 ℃ with water containing 0.1% formic acid-acetonitrile as the mobile phase running at 0.3 mL·min~(-1), and the separation and content determination of ten chemical constituents(e.g., saikachinoside A, locustoside A, orientin, taxifolin, vitexin, isoquercitrin, luteolin, quercitrin, quercetin, and apigenin) in GSF, GFA, and GS were enabled within 31 min. The established method could quickly and efficiently determine the content of ten chemical constituents in GSF, GFA, and GS. All constituents showed good linearity(r>0.995), and the average recovery rate was 94.09%-110.9%. The results showed that, the content of two alkaloids in GSF(2.03-834.75 µg·g~(-1)) was higher than that in GFA(0.03-10.41 µg·g~(-1)) and GS(0.04-13.66 µg·g~(-1)), while the content of eight flavonoids in GS(0.54-2.38 mg·g~(-1)) was higher than that in GSF(0.08-0.29 mg·g~(-1)) and GFA(0.15-0.32 mg·g~(-1)). These results provide references for the quality control of G. sinensis-derived TCMs.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Flavonoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas
5.
Langmuir ; 39(10): 3762-3769, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36872656

RESUMO

Simultaneously achieving electrochemical conversion of biomass-derived molecules into value-added products and energy-efficient hydrogen production is a highly attractive strategy but challenging. Herein, we reported a heterostructured Ni/Ni0.2Mo0.8N nanorod array electrocatalyst deposited on nickel foam (Ni/Ni0.2Mo0.8N/NF), which exhibited excellent electrocatalytic activity toward 5-hydroxymethylfurfural (HMF) oxidation, and nearly 100% conversion of HMF and 98.5% yield of 2,5-furandicarboxylic acid (FDCA) products can be achieved. The post-reaction characterizations unveil that Ni species in Ni/Ni0.2Mo0.8N/NF would be readily converted to NiOOH as the real active sites. Furthermore, a two-electrode electrolyzer was assembled with Ni/Ni0.2Mo0.8N/NF utilized as a bifunctional electrocatalyst for both the cathode and anode, giving rise to a low voltage of 1.51 V to concurrently produce FDCA and H2 at 50 mA cm-2. This work enlightens the significance of regulating redox activities of transition metals via interfacial engineering and constructing heterostructured electrocatalysts toward more efficient energy utilization.

6.
ACS Cent Sci ; 9(3): 488-493, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968525

RESUMO

As materials with permanently porous structures and readily modifying availability, porous aromatic frameworks (PAFs) are considered as promising porous materials with versatile functionality. Currently the designable synthesis of PAFs with the desired surface area and pore size is still a challenge, and instead kinetically irreversible coupling reactions for PAFs synthesis has resulted in the unpredictable connection of building units. Herein, a series of PAFs with highly porous and hierarchical structures were successfully synthesized through a multivariate inspired strategy, where multiple building units with various topologies and sizes were selected for PAFs synthesis. All the PAFs synthesized through this strategy possessed hierarchical structures and high specific surface areas at the same time. Encouraged by their high surface area and hierarchical structures, we loaded lipase onto one of the multivariate PAFs. The enzyme loading content of the obtained lipase@PAF-147 was as high as 1456 mg g-1, which surpassed any other currently reported enzyme loading materials. The lipase@PAF-147 also exhibited favorable catalytic activity and stability to a model reaction of p-nitrophenyl caprylate (p-NPC) hydrolysis. This multivariate strategy inspired synthetic method broadens the selection of building units for PAFs design and opens a new avenue for the design of functional porous materials.

7.
Plants (Basel) ; 11(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807686

RESUMO

Pollination deficits can compromise fruit yield and quality and have been reported in several fruit crops. It is unknown whether there is a pollination deficit in the production of Korla fragrant pear, Pyrus sinkiangensis, in China, and if so, whether this deficit can be mitigated by the use of managed honeybees (Apis mellifera). We assessed insect communities, flower visitation, pollination deficit and honeybee contribution to pear pollination in Korla fragrant pear orchards in Xinjiang, China. Insect communities were monitored using colored pan traps, and pollination deficit was assessed by comparing fruit set with open pollination to that with hand pollination in orchards without beehives from 2018 to 2021. The contribution of honeybees to pollination was assessed by comparing flower visitation, fruit set and fruit quality in pear orchards with and without beehives in 2020 and 2021. In orchards without beehives, wild bees (72%) were the dominant pollinator group in pan traps, followed by honeybees (15%), moths, hoverflies, butterflies and wasps (Vespidae). Fruit set in these orchards was much lower with open pollination (8 ± 2%) than with hand pollination (74 ± 4%). When comparing pollination in orchards with and without beehives in 2020 and 2021, we found that honeybees were responsible for most of the flower visits in orchards with (96%) and without beehives (66%). Wild bees were responsible for 1% and 6% of flower visits in orchards with and without beehives, respectively. Fruit set was significantly higher in orchards with beehives (38 ± 9%) than in orchards without beehives (12 ± 3%), while fruit set and sugar content were positively associated with pollinator visitation rate. The findings reveal a large pollination deficit in Korla fragrant pear orchards, and show that this deficit can be mitigated using managed honeybees.

8.
Front Nutr ; 9: 880488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662952

RESUMO

Insects are a potential alternative protein source to solve the food shortage crisis. Previous studies have illustrated that probiotics can improve the substrate conversion efficiency of insects and increase insect protein content. However, the effects of probiotics on insect physiology and nutrient metabolism are still not well understood. Here, the black soldier fly larvae (BSFL), Hermetia illucens (Diptera: Stratiomyidae), was used as a study subject to deeply investigate the specific interaction among a novel probiotic, Bacillus velezensis EEAM 10B (10B), intestinal microbiota, and the host. In this study, the effects of 10B on the survival and physiology of BSFL were first analyzed. It shows that 10B significantly elevated the substrate conversion rate, average dry weight, and protein content of BSFL by 5%, 0.13 g/pc, and 8%, respectively. Then, we assessed the effect of 10B on the microbial community composition in the gut and frass of BSFL using Illumina Miseq sequencing. It shows that 10B significantly altered the microbial composition of the gut, but not that of the frass. Pearson's correlation analysis further showed that the Bacillus, unclassified_of_Caloramatoraceae, and Gracilibacillus were positively correlated with the survival rate, crude protein content, and substrate conversion rate of BSFL. To further investigate the effect of 10B on host metabolism, metabolic analyses on germ-free BSFL, monobacterial intestinal BSFL, and natural BSFL were also performed. The results proved that 10B (i) played a vital role in the survival of BSFL; and (ii) regulated the amino acid synthetic and metabolic process of BSFL, thus leading to the rise of the protein content of BSFL. In addition, vitamin backfill assays verified that the BSFL survival rate was significantly improved by supplying the germ-free BSFL with riboflavin, which further suggests that 10B determines the survival of BSFL via delivering riboflavin. Overall, this study provides a reference for understanding the comprehensive contribution of a specific probiotic to its host.

9.
ACS Appl Mater Interfaces ; 14(19): 22061-22070, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35535851

RESUMO

Developing high-performance non-noble bifunctional catalysts is pivotal for large-scale seawater electrolysis but remains a challenge. Here we report a sandwichlike NiCo(HPO4)2@Ni3N/NF (denoted by NiCoHPi@Ni3N/NF) catalyst. Vertical Ni3N nanosheet arrays are first grown and supported on nickel foam, and then a bimetallic NiCoHPi coating is decorated on Ni3N nanosheets by one-step electrodeposition. The hierarchical sandwich like structure offers a large surface area and plenty of catalytic active sites, and the coupling of interconnected Ni3N and NiCoHPi accelerates the electron transfer. Moreover, the surficial hydrogen phosphate ions contribute to a proper OH- absorption capacity due to the Lewis acid-base reaction. As a result, the NiCoHPi@Ni3N/NF catalyst exhibits good OER and HER activity, requiring overpotentials of 365 mV (for OER) and 174 mV (for HER) to deliver 100 mA cm-2 in the alkaline simulated seawater electrolyte. When assembled the NiCoHPi@Ni3N/NF catalyst as both the anode and cathode, it only needs 1.86 V to reach 100 mA cm-2 in alkaline simulated seawater electrolyte. This work may inspire the design and exploration of self-supported hierarchical composite electrocatalysts for hydrogen production from the electrolysis of seawater.

10.
Sci Rep ; 12(1): 7347, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513386

RESUMO

In this study, the pit mud used in manufacturing Taorong-type Baijiu was collected from the upper, middle, lower and bottom layers of pits at Henan Yangshao Liquor Co., LTD. High-throughput sequencing (HTS) technology was used to analyze the microbial community structure of the pit mud. In addition, the volatile compounds in the pit mud were subjected to preliminary qualitative analysis through headspace-solid phase microextraction and gas chromatography-mass spectrometry (GC-MS). The HTS results demonstrated that there were 5, 3, 5 and 5 dominant bacterial phyla (including 11, 11, 9 and 8 dominant bacterial genera) and 3, 3, 3 and 3 dominant fungal phyla (including 4, 7, 7 and 5 dominant fungal genera) in the pit mud from the F-S (upper), G-Z (middle), H-X (lower) and I-D (bottom) layers, respectively. In the qualitative analysis of the volatile compounds, a total of 77types of volatile compounds were detected in the pit mud, including 46, 45, 39 and 49 types in the pit mud from layers F-S, G-Z, H-X and I-D, respectively. Esters and acids were the two main components of the pit mud. The correlation between the microorganisms present and the main volatile compounds in the pit mud was analyzed. Lentimicrobium, Syner-01 and Blvii28_wastewater-sludge groups were found for the first time in pit mud used for manufacturing Taorong-type Baijiu. The findings of this study could provide a theoretical foundation for improving the quality of pit mud and the flavor of Taorong-type Baijiu.


Assuntos
Microbiota , Compostos Orgânicos Voláteis , Bebidas Alcoólicas/análise , Bactérias/genética , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , Compostos Orgânicos Voláteis/análise
11.
Insects ; 13(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35621735

RESUMO

Natural habitats play crucial roles in biodiversity conservation and shape the delivery of ecosystem services in farming landscapes. By providing diverse resources to foraging natural enemies, they can equally enhance biological pest control. In this study, we described the plant community and foliage-dwelling invertebrate predators within non-crop habitats of the Gobi Desert oases in southern Xinjiang, China. We assessed whether plant-related variables (i.e., species identity, flowering status) and herbivore abundance affect natural enemy identity and abundance. A total of 18 plant species belonging to 18 genera and 10 families were commonly encountered, with Apocynum pictum (Apocynaceae), Phragmites communis (Poaceae), Karelinia caspia (Asteraceae), and Tamarix ramosissima (Tamaricaceae) as the dominant species. Certain plant species (P. communis) primarily provide shelter, while others offer (floral, non-floral) food resources or alternative prey. Predatory ladybeetles and spiders were routinely associated with these plants and foraged extensively within adjacent field crops. Plant traits and herbivore abundance explained up to 44% (3%-44%) variation in natural enemy community and exhibited consistent, year-round effects. Among all plant species, A. pictum consistently had a significantly higher abundance of resident natural enemies, except for August 2019. Our study underlines how perennial flowering plants, such as A. pictum, are essential to sustain natural enemy communities and related ecosystem services in arid settings. This work not only informs sustainable pest management initiatives but also shows how non-crop habitats at the periphery of agricultural fields underpin ecological resilience under adverse climatic conditions.

12.
Front Surg ; 9: 939034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684165

RESUMO

Purpose: This study was performed to assess the association of calcium channel blockers (CCB) and other potential factors with postoperative lymphatic-related morbidity in patients with cervical cancer and endometrial carcinoma. Methods: Patients diagnosed with cervical cancer or endometrial carcinoma with pelvic lymphadenectomy between January 2017 and January 2022 were enrolled. Postoperative lymphatic-related morbidity was evaluated by calculating the lymph cyst occurrence within 3 months after surgery and the duration of pelvic drainage. Univariate analyses evaluating the risk factors for lymphatic-related morbidity were performed. Results: Of a total of 251 patients, 52 patients were diagnosed with lymphatic cysts by B-ultrasound or computed tomography, and the duration of drainage from 110 patients exceeded the average number of days. Univariable analysis revealed that hypertension, CCB, and lymph node metastasis were independent predictors of postoperative complications. Conclusions: This study demonstrated that CCB may be a factor associated with the incidence of postoperation lymph cysts, and CCB usage prolongs the duration of pelvic drainage.

13.
J Colloid Interface Sci ; 608(Pt 2): 1105-1115, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34739986

RESUMO

The elaborative design and construction of first-rank bifunctional oxygen electrocatalysts featuring low price, high activity and strong stability is critical for the large-scale applications of rechargeable Zn-air batteries. Here, a resultful strategy is proposed for fabricating nitrogen-doped 1D beaded-like structure carbon nanofibers uniformly decorated with nitrogen-doped CuCo2O4 nanoparticles (N-CuCo2O4@CNFs) toward boosting oxygen evolution reaction/oxygen reduction reaction (OER/ORR) catalysis. Taking advantage of the synergistic effect between interconnected 1D hierarchical porous carbon nanofiber structure and high catalytic activity of N-doped CuCo2O4 nanoparticles derived from bimetallic MOFs, the N-CuCo2O4@CNFs catalysts possess enhanced reaction kinetics and preferable charge transfer ability. Impressively, the obtained catalysts exhibit prominent electrocatalytic ability and superior stability for OER/ORR, even surpass the commercial RuO2 and Pt/C. More significantly, the Zn-air batteries employing the N-CuCo2O4@CNFs-800 as cathode display a higher power density of 175.6 mW cm-2, a lower charge-discharge voltage gap of 0.82 V at 10 mA cm-2, as well as a better cycling stability with respect to those of Pt/C + RuO2 mixture, demonstrating the great potential of N-CuCo2O4@CNF as a high-efficiency catalyst for clean energy devices.

14.
J Mater Chem B ; 9(16): 3450-3483, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909746

RESUMO

Cancer nanomedicine is the best option to face the limits of conventional chemotherapy and phototherapy methods, and thus the intensive quest for new nanomaterials to improve therapeutic efficacy and safety is still underway. Owing to their low density, well-defined structures, large surface area, finely tunable pore size, and metal ion free features, covalent organic frameworks (COFs) have been extensively studied in many research fields. The recent great interest in nanoscale COFs to improve the properties of bulk COFs has led to broadening of their applicability in the biomedical field, such as nanocarriers with an outstanding loading capacity and efficient delivery of therapeutic agents, smart theranostic nanoplatforms with excellent stability, high ROS generation, light-to-heat conversion capabilities, and different response and diagnostic characteristics. The COFs and related nanoplatforms with a wide variety of designability and functionalization have opened up a new avenue for exciting opportunities in cancer therapy. Herein we review the state-of-the-art technical and scientific developments in this emerging field, focusing on the overall progress addressed so far in building versatile COF-based nanoplatforms to enhance chemotherapy, photodynamic/photothermal therapy, and combination. Future perspectives for achieving the synergistic effect of cancer elimination and clinical translation are further discussed to motivate future contributions and explore new possibilities.


Assuntos
Antineoplásicos/uso terapêutico , Estruturas Metalorgânicas/uso terapêutico , Nanopartículas/química , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Humanos , Estruturas Metalorgânicas/química , Fototerapia
15.
Complement Ther Clin Pract ; 36: 100-112, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31383426

RESUMO

BACKGROUND: Acupuncture has been used to treat type 2 diabetes (T2DM) for 2000 years and there are emerging clinical evidence and animal studies for its efficacy. However, we are unable to conclude the effectiveness and safety on this issue yet. OBJECTIVES: To assess the effects and safety of acupuncture for T2DM. METHODS: We systematically searched 5 databases and 2 clinical registry platforms from inception to 2018-6-4. RCTs for acupuncture or its variants compared with sham acupuncture or no acupuncture controls for T2DM were included. The primary outcomes were glycemic control and adverse events. RESULTS: A total of 21 studies, which comprised a total of 1943 participants, were included in the final meta-analysis. Compared with sham acupuncture or no acupuncture plus baseline treatments, acupuncture plus baseline treatments yield reduction in FBG(MD 1.21 mmol/l, 95%CI 1.56 to 0.87), 2 h BG(MD 2.13 mmol/l, 95%CI 2.79 to 1.46), HA1c (MD 1.12%, 95%CI 1.62 to 0.62). Our results also show acupuncture can improve blood lipids and blood pressure control, and reduce weight. CONCLUSIONS: As one type of multifactorial intervention, acupuncture could be recommended as a supplementary treatment in the management of T2DM, especially in those with obesity or metabolic disorders. However, due to the small sample size, poor methodological quality of trials reviewed, the amount of evidence is not fully convincing. There is a need for well-planned, long-term studies. REGISTRATION: International Prospective Register of Systematic Reviews (Number CRD42018094573).


Assuntos
Terapia por Acupuntura , Diabetes Mellitus Tipo 2/terapia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Nanotechnology ; 29(21): 215604, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29513267

RESUMO

Conducting polymers (CPs) at nano scales endow materials with special optical, electrical, and magnetic properties. The crucial factor to construct and regulate the micro-structures of CPs is the inducing reagent, particular in its chemical structure, such active sites, self-assembling properties. In this paper, we design and synthesize an amphiphile bearing tetrazole moiety on its skeleton, and use this amphiphile as an inducing reagent to prepare and regulate the micro-structures of a series of CPs including polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) and poly(p-phenylenediamine). Because of the unique electric properties of CPs and size effect, we next explored the electromagnetic absorption performances of these CPs nanostructures. A synergetic combination of electric loss and magnetic loss is used to explain the absorption mechanism of these CPs nano-structures.

17.
RSC Adv ; 8(58): 33065-33071, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-35548124

RESUMO

Reduced graphene oxide (RGO) has been prepared by a hydrothermal reduction method to explore the effects of reaction temperature on its permittivity and electromagnetic absorption (EA) performance. This study shows that by controlling the oxygen functional groups on the RGO surface it is also possible to obtain an ideal EA performance without any other decorated nanomaterials.

18.
ACS Appl Mater Interfaces ; 9(38): 33041-33048, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28881126

RESUMO

The design of novel hybrid nanostructures has been seen as an effective route to tune the properties of materials. Herein, we provide an in situ growth strategy to efficiently construct kebab-like hybrids, which are composed of one-dimensional SiC nanowires stringing polyhedral metal organic frameworks (MOFs). Through a heat-treatment process regardless of under air or argon, these hybrids generate an excellent electromagnetic absorption (EMA) ability. We comprehensively explored the growth and calcination process of these hybrids as well as their EMA enhanced mechanism. The results indicate that the MOFs kept as shrunken polyhedrons under air but decomposed to small particles under argon, due to the different calcination mechanism. In addition, the enhanced EMA ability should be attributed to the combined influences of the reduced dielectric constant, enlarged aspect ratio, and enhanced interface polarization. This research opens up the rational designs and applications of novel materials by the hybridizing of nanomaterials in multidimensions.

19.
Nanoscale ; 9(30): 10961-10965, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28737781

RESUMO

The applications of inorganic semiconductor nano-structures as electromagnetic interference (EMI) shielding materials have been scarcely researched. Herein, we have designed hollow Cu1.8S nano-cubes via a mild anion exchange and etching process. These 30 wt% hollow Cu1.8S nano-cubes loaded in wax can display 30 dB of EMI shielding effectiveness (SE) in the whole tested frequency range of 2-18 GHz with a sample thickness of only 1 mm. This good EMI shielding performance can be attributed to the high electric conductivity, which leads to a high dielectric constant. This research opens up the possibility for the applications of inorganic semiconductor nano-structures as lightweight EMI shielding materials, especially in the areas of aerospace, automobile and sophisticated electronics.

20.
Nanotechnology ; 28(31): 315701, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28594640

RESUMO

Ribbon-like nano-structures possess high aspect ratios, and thus have great potential in the development of high-performance microwave absorption (MA) materials that can effectively eliminate adverse electromagnetic radiation. However, these nano-structures have been scarcely constructed in the field of MA, because of the lack of efficient synthetic routes. Herein, we developed an efficient method to successfully construct polypyrrole (PPy) nano-ribbons using the self-assembly aggregates of a racemic surfactant as the seeds. The frequency range with a reflection loss value of lower than -10 dB reached 7.68 GHz in the frequency range of 10.32-18.00 GHz, and surpassed all the currently reported PPy nano-structures, as well as most other MA nano-materials. Through changing the amount of surfactant, both the nano-structures and MA performance can be effectively regulated. Furthermore, the reason behind the high-performance MA of PPy nano-ribbons has been deeply explored. It opens up the opportunity for the application of conducting polymer nano-ribbons as a lightweight and tunable high-performance MA material, especially in applications of special aircraft and flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...